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Uniform shear flow is a paradigmatic example of a nonequilibrium fluid state
exhibiting non-Newtonian behavior. It is characterized by uniform density and
temperature and a linear velocity profile Ux(y)=ay, where a is the constant
shear rate. In the case of a rarefied gas, all the relevant physical information
is represented by the one-particle velocity distribution function f(r, v)=f(V),
with V — v−U(r), which satisfies the standard nonlinear integro-differential
Boltzmann equation. We have studied this state for a two-dimensional gas of
Maxwell molecules with a collision rate K(h)3 limEQ 0 E−2d(h− E), where h is
the scattering angle, in which case the nonlinear Boltzmann collision operator
reduces to a Fokker–Planck operator. We have found analytically that for
shear rates larger than a certain threshold value ath 4 0.3520n (where n is an
average collision frequency and ath/n is the real root of the cubic equation
64x3+16x2+12x−9=0) the velocity distribution function exhibits an algebraic
high-velocity tail of the form f(V; a) ’ |V|−4−s(a) F(j; a), where j — tan Vy/Vx
and the angular distribution function F(j; a) is the solution of a modified
Mathieu equation. The enforcement of the periodicity condition F(j; a)=
F(j+p; a) allows one to obtain the exponent s(a) as a function of the shear
rate. It diverges when aQ ath and tends to a minimum value smin 4 1.252 in the
limit aQ.. As a consequence of this power-law decay for a > ath, all the veloc-
ity moments of a degree equal to or larger than 2+s(a) are divergent. In the
high-velocity domain the velocity distribution is highly anisotropic, with the
angular distribution sharply concentrated around a preferred orientation angle
j̃(a), which rotates from j̃=−p/4, 3p/4 when aQ ath to j̃=0, p in the limit
aQ..

KEY WORDS: Uniform shear flow; Boltzmann equation; Maxwell molecules;
High-velocity tail.



1. INTRODUCTION

In the investigation of the physical properties of fluids far from equilib-
rium, one usually focuses on the nonlinear dependence of the momentum
and heat fluxes on the gradients of the hydrodynamic fields. The associated
transport properties are related to the population of molecules with
energies of the order of or less than the mean kinetic energy, so that mole-
cules moving with velocities much larger than the thermal velocity hardly
contribute to those properties. However, the knowledge of the high-energy
population in nonequilibrium states is important not only from a theoreti-
cal point of view but also because that population may play a crucial role
in processes such as chemical reactions with a high activation energy or in
the controlled thermonuclear fusion of a confined hydrogen plasma.
Of course, a general description of the high-energy population for

arbitrary nonequilibrium states is not possible. Therefore, it is worthwhile
gaining some insight by considering particular states. It can be fairly said
that one of the most extensively studied nonequilibrium states is the so-
called uniform shear flow (USF). At a macroscopic level, it is characterized
by a constant density n, a uniform temperature T, and a linear profile of
the x component of the flow velocity along the y direction, i.e., Ux(y)=ay,
a being the constant shear rate. This shear rate represents the only control
parameter needed to measure the departure of the USF state from equilib-
rium. At a microscopic level, (1) the USF is described by a solution of the
Liouville equation with Lees–Edwards boundary conditions, (2) which can
be seen as periodic boundary conditions in the local rest frame. These
conditions assure the consistency of uniform shear, density, and tempera-
ture, even far from equilibrium. This state has been widely used to study
rheological properties, such as shear thinning and viscometric effects. It
must be borne in mind that, except in the linear regime, the USF is not
equivalent to the planar Couette flow. In the latter, the shearing is
produced by ‘‘realistic’’ walls in relative motion, so that the boundary
conditions correspond to particles interacting with the walls rather than to
the generalized periodic Lees–Edwards boundary conditions. In contrast
to USF, boundary effects are present in the Couette flow and, in addition,
the shear rate, density, and temperature are local quantities. (3) Far from
equilibrium, the rheological properties of the Couette flow differ from
those of the USF. (4)

In general, no rigorous theory based on first principles exists for the
USF state. On the other hand, if one restricts oneself to the case of dilute
gases, the most relevant physical information is contained in the one-par-
ticle velocity distribution function f(r, v, t) and then the Liouville equation
or, equivalently, the BBGKY hierarchy can be successfully contracted to
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a closed equation for f, namely the nonlinear Boltzmann equation. (5, 6)

A number of exact results have been derived from the Boltzmann equation
specialized to the case of Maxwell molecules under USF. Almost half a
century ago, Ikenberry and Truesdell (7–9) showed that the infinite hierarchy
of moment equations could be recursively solved. In particular, they
obtained the temporal evolution of the second-degree moments, which are
the quantities related to the rheological properties, for arbitrary values of
the shear rate. Truesdell and Muncaster (9) analyzed the temporal evolution
of the third-degree moments (for instance, the heat flux), which are
expected to vanish for long times because of symmetry. They observed that
for shear rates larger than a certain value some of those moments increased
with time, a feature they referred to as an instability in the heat flux solu-
tion. However, further analysis (10) has proved that such an increase is
actually a consequence of the viscous heating and that the heat flux does
indeed vanish for long times when it is properly scaled with respect to
the thermal velocity, so the apparent instability is then removed. More
recently, explicit expressions for the fourth-degree moments have also been
derived. (10, 11) While the (scaled) second-degree moments remain finite for
arbitrary shear rates, there exists a critical value ac of the shear rate,
beyond which the fourth-degree moments diverge. The analysis of this sin-
gular behavior has been extended to moments up to degree 36 and 240 for
three-dimensional (12) and two-dimensional (13) systems, respectively. These
exact results show that the moments of an even degree k \ 4 are divergent
if the shear rate is larger than a certain k-dependent critical value that
decreases as the degree k increases. This behavior of the moments indicates
that the distribution function presents an algebraic high-velocity tail. This
expectation has been strongly supported by direct Monte Carlo simula-
tions, (13, 14) which also show that the high-velocity distribution function
presents a strong anisotropy. To the best of our knowledge these high-
velocity properties have not been so far confirmed at a theoretical level.
The aim of this paper is to fill this gap.
Since, due to the complexity of the collision term, the nonlinear

Boltzmann equation is extremely difficult to solve, we consider here a sim-
plified model of two-dimensional Maxwell molecules. In this model the
collision rate is assumed to vanish for all the scattering angles except for a
small angle corresponding to grazing collisions. This allows us to replace
the nonlinear collision operator by a Fokker–Planck operator (5) that, on
the other hand, preserves most of the general features of the original
operator. By assuming a high-velocity tail of the form f(V) ’ V−4−sF(j),
where V=v−U is the peculiar velocity and j=tan−1 Vy/Vx is the polar
angle in velocity space, the Boltzmann equation yields a linear second-
order ordinary differential equation for F. The periodicity condition on
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F(j) determines s as a function of the shear rate, thus confirming the
assumed algebraic tail. The results show that the exponent s(a) is a mono-
tonically decreasing function that diverges when a approaches a threshold
value ath and tends to a minimum value smin 4 1.252 in the limit of large
shear rates. The first property means that for shear rates smaller than ath
the distribution function decays for large velocities more rapidly than any
power law (e.g., as a stretched exponential), while the second property
implies that, even for large shear rates, all the moments of the form OVkP
with k [ 2+smin are finite. The orientation distribution F(j) in the high-
velocity domain is concentrated around a preferred angle j̃(a) that rotates
counter-clockwise as the shear rate increases. Moreover, this distribution
is infinitely sharp for the extreme values of the shear rate: limaQ ath F(j)=
1
2 [d(j−3p/4)+d(j−7p/4)], limaQ. F(j)=

1
2 [d(j)+d(j−p)]. To our

knowledge, this is the first time that such a detailed picture of the high-
velocity behavior of the solution to the Boltzmann equation in a far from
equilibrium state has been analytically described.
The organization of this paper is as follows. The uniform shear flow

state is described in Section 2. Some exact scaling properties in the case of
Maxwell molecules are used to map the time-dependent state of the system
onto an equivalent ‘‘thermostatted’’ state which reaches a nonequilibrium
steady state for long times. The simple scattering model representing
grazing collisions is introduced in Section 3. The temporal evolution of the
(scaled) fourth-degree moments is analyzed, the results showing that they
diverge for shear rates equal to or larger than a certain critical value ac,
as expected from previous analyses for more realistic scattering laws. (13, 14)

The derivation of the high-velocity tail of the form f(V) ’ V−4−sF(j) is
worked out in Section 4, where the dependence of the exponent s on
the shear rate is obtained from the periodicity condition F(j)=F(j+p).
Finally, the results are discussed in Section 5.

2. UNIFORM SHEAR FLOW

The most relevant quantity to determine the nonequilibrium properties
of a dilute gas is the one-particle velocity distribution function f(r, v, t).
Its time evolution is governed by the nonlinear Boltzmann equation. In the
absence of external forces, it reads: (5, 6, 15)

“

“t
f+v ·

“

“r
f=F dv1 F dW |v− v1 | I(|v− v1 |, h)(fŒf

−

1−ff1)

— Q[f, f], (1)
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where I(g, h) is the differential cross section (h being the scattering angle)
and we are using standard notation to denote the distribution function
evaluated at pre- and post-collisional velocities. Of course, Eq. (1) must be
supplemented with the appropriate initial and boundary conditions.
Let us now introduce the velocity field

Ui(r)=aijrj, aij=adixdjy, (2)

where a is a constant shear rate. We define the uniform shear flow (USF)
state as the one that is spatially homogeneous when the velocities of par-
ticles are referred to a Lagrangian frame moving with the velocity field
U(r), i.e.,

f(r, v, t)=f(V, t), (3)

where V — v−U(r) is the peculiar velocity. Consequently, the Boltzmann
equation (1) becomes

“

“t
f−

“

“Vi
aijVjf=Q[f, f]. (4)

The usual boundary conditions used to generate the USF are the Lees–
Edwards periodic boundary conditions, (2, 16) but the so-called ‘‘bounce-
back’’ boundary conditions (17, 18) are also consistent with the USF. It is
worthwhile noting that Eq. (4) can be interpreted as representing a homo-
geneous state under the action of the nonconservative external force
Fi=−maijVj. Note also that Eq. (4) is invariant under the transformation
(Vx, Vy)Q (−Vx, −Vy).
Let us now particularize to the case of Maxwell molecules, i.e., par-

ticles interacting via a potential f(r)3 r−2(d−1), where d is the dimensio-
nality of the system. In that case, the collision rate gI(g, h)=K(h) is
independent of the relative velocity g. (19, 20) From a mathematical point of
view, this makes the Boltzmann collision operator more tractable than for
other interaction models. In particular, any collisional moment of degree k
can be expressed as a bilinear combination of moments of f of degrees kŒ
and kœ, such that kŒ+kœ=k. (9, 20, 21) This allows one, in principle, to solve
recursively the hierarchy of moment equations arising from Eq. (4), even
though the explicit form for f is not known. (7–14, 22) In addition, Eq. (4)
for Maxwell molecules exhibits the following scaling property. (10, 16) Let us
introduce the scaled quantities

Vb=e−atV, (5)

f̄(Vb, t)=edatf(V, t), (6)
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where a is an arbitrary constant. Then, Eq. (4) reduces to

“

“t
f̄−

“

“V̄i
(aijV̄j+aV̄i) f̄=Q[f̄, f̄]. (7)

This equation can be interpreted as the one corresponding to USF in pres-
ence of an external drag force −maVb. Since the mapping of Eq. (4) onto
Eq. (7) (and vice versa) is an exact property, we are free to choose the
parameter a as we like. For convenience, we choose a as a function of the
shear rate a by the condition that the scaled temperature

T̄(t)=e−2atT(t)=
m
3nkB

F dVb V̄2f̄(Vb, t) (8)

reaches a constant value in the long-time limit. In the above equation,
m is the mass of a particle, kB is the Boltzmann constant, n is the number
density, and T is the unscaled temperature. With this choice of a, the
term −maVb plays the role of a thermostat force. This kind of thermostat
forces is usually employed in nonequilibrium molecular dynamics simula-
tions. (23–25) Henceforth, we will adopt the point of view behind Eq. (7), i.e.,
all the quantities will be understood to be scaled quantities, and we will
drop the bars for convenience. Taking second-degree moments in Eq. (7)
we have

“

“t
Pij+(aikPjk+ajkPik)+2aPij=−n(Pij−pdij), (9)

where

Pij=m F dV ViVjf (10)

is the pressure tensor, p=nkBT=
1
d Tr P is the hydrostatic pressure, and n

is an effective collision frequency defined as (see Appendix A)

n=n
2d
d−1

F dW K(h) sin2
h

2
cos2
h

2
. (11)

It is convenient to choose n−1 as the time unit and introduce the dimen-
sionless quantities tg=nt, ag=a/n, and ag=a/n. Henceforth, these
reduced variables will be implicitly assumed and the asterisks will be
omitted.
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From Eq. (9) it is easy to get the following closed differential equation
for the temperature:

1 “
“t
+2a21 “

“t
+2a+12

2

T=
2
d
a2T. (12)

So far, a is arbitrary. Now, as said before, we choose a under the condition
that the temperature reaches a stationary value in the long-time limit. This
implies that a(a) is the real root of the cubic equation

a2=da(1+2a)2, (13)

i.e.,

a(a)=2
3 sinh

2[16 cosh
−1(1+z)]

=1
6(1+z+`2z+z

2)1/3+16(1+z−`2z+z
2)1/3− 13 , (14)

where z — 27
d a

2. The stationary values of the elements of the pressure tensor
are then easily obtained from Eq. (9):

Pxx=p
1+2da
1+2a

, Pyy=·· ·=Pdd=
p
1+2a

, Pxy=−a
p

(1+2a)2
. (15)

These quantities exhibit non-Newtonian effects: normal stress differences
and a nonlinear relationship between the shear stress and the shear rate.
While the second-degree moments are well defined for any value of the

shear rate a, moments of degree four and higher diverge if a is larger than
a certain critical value ac. (10–13) This suggests that the stationary solution to
Eq. (7) presents a high-velocity tail of the form f(V) ’ V−d−2−s(a), where
s(a) is a positive definite exponent that is a decreasing function of the
shear rate.

3. A SIMPLE SCATTERING MODEL

In the Monte Carlo simulations as well as in the theoretical analysis of
higher-degree moments presented in ref. 13 the scattering law was assumed
to be isotropic: K(h)=const. However, this choice for the collision rate
does not simplify the collision operator in a significant way as to allow one
to confirm theoretically the high-velocity tail. Since the main features can
be expected to be to some extent independent of the particular scattering
model K(h), it is convenient to consider the simplest choice lending itself to
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an analytic or semi-analytic treatment. Here we consider the following
simplified scattering model:

K(h)=K0 lim
EQ 0
E−dd(h− E), (16)

which corresponds to grazing collisions of Maxwell molecules. It is proved
in Appendix B that in this case the collision operator becomes

Q[f, f]Q
n

4d
5(d−1) “

“Vi
Vi+
dpdij−Pij
mn

“

“Vi

“

“Vj
+L26 f(V), (17)

where

L2=1V× “
“V
22= “

“Vi
(V2dij−ViVj)

“

“Vj
. (18)

The right-hand side of (17) has the structure of a Fokker–Planck operator
with a velocity-dependent diffusion term. The model (17) was derived (with
d=3) in Section II.9 of ref. 5 as the contribution of grazing collisions to
the collision operator. Since here only grazing collisions are considered, the
above contribution becomes the entire collision operator.
Now, we restrict ourselves to the two-dimensional case (d=2), so that

Eq. (7) becomes

“

“t
f−aVy

“

“Vx
f−a

“

“Vi
Vif=

1
8
1 “
“Vi
Vi+
2pdij−Pij
mn

“

“Vi

“

“Vj
+L22 f, (19)

where we have already made n=1. Of course, by taking second-degree
moments we reobtain Eq. (9). Let us consider now the fourth-degree
moments

Ms=
1
n
F dV V4−sx V

s
yf(V), s=0,..., 4. (20)

Multiplying both sides of Eq. (19) by V4−sx V
s
y and integrating over V we get

“

“t
Ms+(4−s) aMs+1+4aMs

=−
4+s(4−s)

4
Ms+

(4−s)(3−s)
8

Ms+2+
s(s−1)
8

Ms−2

−
s(4−s)
4

P1Ps−1+
(4−s)(3−s)

8
P2Ps+

s(s−1)
8

P0Ps−2, (21)
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where P0 — Pxx/mn, P1 — Pxy/mn, and P2 — Pyy/mn. In matrix notation,

“

“t
Ms=− C

4

sŒ=0
LssŒMsŒ+Ns, (22)

where

LssŒ(a)=54a(a)+
4+s(4−s)

4
6 dsŒ, s

+(4−s) adsŒ, s+1−
(4−s)(3−s)

8
dsŒ, s+2−

s(s−1)
8

dsŒ, s−2, (23)

and Ns is a bilinear combination of second-degree moments. The temporal
evolution of the moments Ms is governed by the eigenvalues ls(a) of
the matrix Ls, sŒ(a). At equilibrium (a=0) the eigenvalues are l0(0)=

1
2 ,

l1(0)=l2(0)=1, and l3(0)=l4(0)=
5
2 . At finite shear rate, the degener-

acy is broken, (l1, l2) and (l3, l4) becoming two conjugate pairs. The
trace of the matrix LssŒ(a) is l0(a)+2 Re l1(a)+2 Re l3(a)=

15
2+20a(a),

which is a monotonically increasing function of the shear rate. On the other
hand, as Fig. 1 shows, while the real parts of l1–l4 monotonically increase
with the shear rate, the only real eigenvalue l0 decreases and eventually
becomes negative for a \ ac 4 2.48553. This implies that for a \ ac the
fourth-degree moments diverge in the long-time limit. Of course, moments
of a degree higher than four are also divergent for a \ ac. As said in the
Introduction, the existence of a critical shear rate ac was first obtained

Fig. 1. Real parts of the eigenvalues ls associated with the fourth-degree moments, as func-
tions of the shear rate. The arrow indicates the location of the critical shear rate ac 4 2.48553
beyond which l0 < 0 and, consequently, all the moments of degree four and higher diverge.
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analytically in the case of Maxwell molecules with regular collision rates,
both for d=3 (10–12) and d=2. (13, 14) For instance, ac 4 5.847 (13) in the case
of two-dimensional Maxwell molecules with isotropic scattering. Thus, the
singular behavior of the fourth-degree momentsMs is not an artifact of the
scattering model (16).
The divergence ofMs for a \ ac is a strong indication that the velocity

distribution function reaches a steady state form that has an algebraic
decay f(V) ’ V−4−s(a) with s(a) [ 2. Conversely, for a < ac one can expect
that s(a) > 2, so that the fourth-degree moments converge, but moments of
a higher degree 2k+2 will diverge whenever the shear rate is such that
s(a) [ 2k. While this scenario has been supported by computer simula-
tions, (13, 14) we are not aware of any derivation of this high-velocity tail
from the Boltzmann equation, prior to the one presented in the next
section.

4. HIGH-VELOCITY TAIL

From Eq. (19) we get the following equation for the steady state dis-
tribution function:

58aVy
“

“Vx
+(1+8a)

“

“Vi
Vi+L26 f=Pij−2pdij

mn
“

“Vi

“

“Vj
f. (24)

This is still a complicated equation to solve for all velocities. However, we
are interested here in the solution for large velocities. In that domain, the
right-hand side of Eq. (24) is of order V−2 relative to the term L2f [cf.
Eq. (18)], so it can be neglected. By the arguments given at the end of the
previous section, we look for self-consistent solutions with the asymptotic
behavior

f(V; a) ’ V−4−s(a)F(j; a) (25)

for large velocities. In Eq. (25) j is the polar angle in velocity space, i.e.,

Vx=V cos j, Vy=V sin j, (26)

F is a function measuring the degree of anisotropy of the high-velocity dis-
tribution function, and s is the exponent characterizing the algebraic decay.
These two quantities must be determined self-consistently. According to
Eq. (25), the left-hand side of Eq. (24) is proportional to V−4−s, while the
right-hand side is proportional to V−6−s. Consequently, the latter must be
neglected against the former in the limit of large velocities, as said before.
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In polar coordinates, the operators on the left-hand side of Eq. (24)
become

Vy
“

“Vx
=cos j sin jV

“

“V
− sin2 j

“

“j
, (27)

“

“Vi
Vi=2+V

“

“V
, (28)

L2=
“
2

“j2
. (29)

Thus, when Eq. (25) is inserted into Eq. (24) one gets the following linear
second-order ordinary differential equation

Fœ(j)−p[1− cos(2j)] FŒ(j)−[b+2q sin(2j)] F(j)=0, (30)

where p — 4a, b — (2+s)(1+8a), and q — 2a(4+s). Equation (30) is a
generalization of Mathieu’s equation (26, 27) and reduces to it if p=0.
However, since in our case p ] 0, we have to deal with Eq. (30) rather
than with Mathieu’s well-known equation. The symmetry property f(V)=
f(−V) implies the periodicity condition F(j)=F(j+p). From a mathe-
matical point of view, Eq. (30) supports those periodic solutions provided
that the parameter b takes a characteristic value b(p, q). Since the shear
rate a and the scaling coefficient a are related through Eqs. (13) and (14),
only two of the three parameters b, p, and q are independent. Thus, the
characteristic value b(p, q) translates into s(a). In case there are multiple
solutions for a given a, the relevant solution is the one related to the
dominant tail, which corresponds to the smallest value of s. In the sub-
sequent mathematical analysis we consider b, p, and q as independent
parameters and only at the end we will take into account that in our phy-
sical problem b=(2+s)(1+8a), p=4a, and q=2a(4+s).
In order to find the periodic solutions to Eq. (30) and the correspond-

ing characteristic values, we write

F(j)= C
.

m=−.
Cme2imj, C−m=C

g
m. (31)

If the above is substituted into Eq. (30), one obtains the recurrence
relations

mm+1Cm+1+cmCm−m−m+1Cm−1=0, (32)
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where

mm — q−mp, cm — 2mp−i(b+4m2). (33)

In particular, setting m=0,

C0=−i
q−p
b
(C1−C−1)=2

q−p
b
Im C1. (34)

Therefore, by applying Eq. (32) to m \ 1, all the coefficients Cm, m \ 2, can
be obtained recursively from C1. The coefficients Cm with m [ −2 are then
given by the symmetry relation C−m=C

g
m. The characteristic values arise

from the convergence condition

lim
mQ.

|Dm | < 1, Dm —
Cm+1
Cm
. (35)

The recurrence relation for the ratios Dm is

mm+1Dm+cm−m−m+1D
−1
m−1=0. (36)

Thus, all the coefficients Dm with m \ 1 are obtained from D0, the latter
being subject to the compatibility condition

Im D0=
b

2(q−p)
, (37)

as follows from Eq. (34). Equation (36) shows that there are two possible
asymptotic behaviors of Dm for large m. Either

Dm % −
4i
p
m (38)

or

Dm % −
p
4i
m−1. (39)

The latter is the only one consistent with the convergence condition (35).
This allows us to use (36) to develop Dm as the continued fraction

Dm=
m−m

cm+1+mm+2Dm+1
(40a)

=
m−m

cm+1+
mm+2 m−m−1

cm+2+
mm+3 m−m−2

cm+3+
·· · . (40b)
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Finally, the characteristic values are obtained from the compatibility
condition (37), namely

Im 1 m0
c1+

m2 m−1

c2+
m3 m−2

c3+
·· · 2= b

2(q−p)
. (41)

Once the relationship b(p, q) is found, the ratios Dm are obtained from
Eq. (40b) or, equivalently, from Eq. (40b) for m=0 and from Eq. (36) for
m \ 1. The angular distribution function is then given by Eq. (31) with

Cm=
1
2p

D
m−1

mŒ=0
DmŒ, m \ 1, (42)

where the particular value C0=1/2p has been chosen to verify the nor-
malization condition

F
2p

0
dj F(j)=1. (43)

Since Eqs. (40b) and (41) involve infinite continued fractions, in practice we
proceed by setting DN=−(p/4i) N−1 for a certain large value of N and
then using (40a) to get Dm for m [N−1 up to m=0. We have typically
taken N ’ 103 and have checked that the results are rather insensitive to a
further increase of N.
Before going back to our original physical problem and take into

account the expressions of b, p, and q in terms of a and s, it is worthwhile
exploring the following limiting cases.

(i) Consider first that the ratio q/p is equal to an integer number,
q/p=k+2. This means that mk+2=0, so that Eq. (41) becomes

Im 1 m0
c1+

m2 m−1

c2+
m3 m−2

c3+
·· ·
mk+1 m−k

ck+1
2= b

2(k+1) p
, (44)

which gives rise to an algebraic equation of degree 2k+3 for b. For
instance,

b3+8b2+16b−16p2=0, (45)

b5+40b4+528b3+16(160−21p2) b2+256(16−15p2) b−12288p2=0,
(46)
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for k=0 and k=1, respectively. Next, Eq. (40a) gives Dm for m [ k in a
closed form, while the infinite continued fraction (40b) must be used for
m \ k+1. For instance, in the case k=0,

D1=
4p

4p−(16+b) i
, D0=3p

4p−(16+b) i
12p2−(4+b)(16+b)−6p(8+b) i

. (47)

(ii) We now consider the limit qQ. with p=finite. In that case,
as verified later by consistency, the characteristic value scales as bQ qb1,
so that mm Q q and cm Q −iqb1. Consequently, Eq. (36) becomes

Dm−ib1−D
−1
m−1=0. (48)

The solution consistent with the convergence of the series and with Eq. (37)
is simply Dm=e−2ij0, where j0 is an angle defined by

sin 2j0=−
b1

2
. (49)

This implies that 0 [ b1 [ 2. The function F is

F(j)=
1
2p

C
.

m=−.
e2im(j−j0)

=
1
2
[d(j−j0)+d(j−j0+p)]. (50)

(iii) As a third limiting case, let us consider qQ., pQ.,
q/p=finite. It is then expected that b/qQ 0, so that cm Q 2mp. The con-
sistent solution to Eq. (36) is Dm=1, which corresponds to

F(j)=1
2[d(j)+d(j−p)]. (51)

Numerical analysis shows that in this limit the characteristic value b scales
as b=(b2 p2)1/3, where b2 depends on the ratio q/p. In the special case of
q/p=integer, the values of b2 can be obtained from the algebraic equation
(44). In particular, we get b2=16, b2=336, and b2=1008±96`79 for
q/p=2, q/p=3, and q/p=4, respectively.

Nowwe apply the above analysis to the physical values b=(2+s)(1+8a),
p=4a, and q=2a(4+s), where a and a are related by Eqs. (13) and (14).
The case (i) above, namely q/p=k+2 with k integer, corresponds to
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s=2k, so that the solution to Eq. (44) gives the critical value of the shear
rate beyond which all the moments of a degree equal to or larger than
2k+2 diverge. For k=0, Eq. (45) gives rise to a cubic equation in a with
no positive real root. This is expected since, as seen in Section 2, the second-
degree moments converge. For k=1, Eq. (46) gives rise to the same quintic
equation as obtained from det LssŒ=0, where the matrix LssŒ is given by
Eq. (23). The solution to this equation is a 4 0.61796, which corresponds
to a 4 2.48553, i.e., the critical value ac found in Section 2 from the time
evolution of the fourth-degree moments. In a similar way, we find the
values a 4 1.11175, a 4 0.87611, a 4 0.77052, and a 4 0.70842 for s=4,
s=6, s=8, and s=10, respectively. It is interesting to note that for s=8
and s=10 there exists a larger second solution (a 4 52.5 and a 4 7.3,
respectively). This indicates that, in addition to the smallest eigenvalue,
another of the eigenvalues governing the time evolution of the moments of
degree 10 and 12, respectively, becomes negative at those large shear rates.
This property has been observed before in the case of more realistic scat-
tering laws. (13) Of course, whenever there are different values of a consistent
with a given value of s, the actual function s(a) corresponds to the
smallest value of a. Equivalently, if the characteristic equation (41) gives
more than a value of s for a given shear rate, the function s(a) is defined
by the smallest value.
Now we consider the case (ii) above, which corresponds to the situa-

tion sQ.. For which value of the shear rate does this happen? Mathe-
matically speaking, there are an infinite number of solutions, namely the
solutions to (1+8a)/2a=b1 with 0 [ b1 [ 2. Taking into account
Eq. (13), this is equivalent to the cubic equation

8b31a
3+4(5b21−16) a

2+6b1a−9=0. (52)

The real solution to this equation is a monotonically decreasing function
of b1. Therefore, the physical value of the shear rate at which sQ. cor-
responds to b1=2. This defines the threshold shear rate ath=(`57/96+
67/864)1/3−(`57/96−67/864)1/3−1/12 4 0.352047 beyond which the
high-velocity tail has the form (25). Conversely, if a [ ath, the decay of the
velocity distribution function is more rapid than any algebraic tail and all
the velocity moments are convergent. This is in contrast with the results
obtained from realistic scattering laws, which suggest that ath Q 0 in those
cases. (12, 13) Since b1=2, Eq. (49) yields j0=3p/4 and Eq. (50) becomes

lim
aQ ath

F(j; a)=
1
2
5d 1j−3

4
p2+d 1j−7

4
p26 , lim

aQ ath
s(a)=.. (53)
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Next, we investigate the limit of large shear rates, aQ.. In that case,
a % a2/3/2, on account of Eq. (13). The question now is, what is the corre-
sponding value s(.) — smin? Computer simulations for Maxwell molecules
interacting with an isotropic scattering law suggest that smin=0. However,
this is not the case with the scattering law (16). According to the case (iii)
above, the value of smin must be such that b2=4(2+smin)3 for q/p=
2+smin/2. A numerical calculation gives smin 4 1.252, i.e., b2 4 137.6 at
q/p=2.626, which is consistent with the fact that b2=16 and b2=336 at
q/p=2 and q/p=3, respectively. The minimum value smin means that, no
matter how large the shear rate is, not only the second-degree moments are
finite, but so are moments of the form OVkP with k [ 2+smin 4 3.252. On
the other hand, the high-velocity distribution function becomes strongly
anisotropic for large shear rates since, according to Eq. (51),

lim
aQ.
F(j; a)=1

2[d(j)+d(j−p)], lim
aQ.
s(a)=smin. (54)

The complete dependence of s on the shear rate is shown in Fig. 2,
where the dotted lines indicate the locations of ath and smin. The region
near a=ath is shown in Fig. 3. The results can be well fitted to the power
law s % e−0.02(a−ath)−1.93. The behavior for large shear rates is shown in
Fig. 4, where the results can be fitted to s−smin % e−0.04a−0.71.
In addition to the function s(a), the solution to the problem gives the

angular distribution F(j; a) for any shear rate a > ath. The results indicate
that in the high-velocity domain the distribution is highly anisotropic, with
the angular distribution sharply concentrated around a preferred orienta-
tion angle j̃(a) that rotates from j̃=3p/4, 7j/4 when aQ ath, Eq. (53), to

0 1 2 3 4 5
100

101

102

103

104

105

σ(a)

a

Fig. 2. Plot of the exponent s as a function of the shear rate a. The vertical and horizontal
dotted lines indicate the locations of ath 4 0.3520 and smin 4 1.252, respectively.
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10-3 10-2 10-1101

102

103

104

105

σ(a)

a-a
th

Fig. 3. Log–log plot of s versus a−ath. The solid line is a linear fit.

j̃=0, p when aQ a., Eq. (54). This transition is illustrated in Fig. 5. The
anisotropic behavior observed in Fig. 5 is consistent with the one shown in
Fig. 8 of ref. 13 in the case of computer simulations of Maxwell molecules
with a constant collision rate.

5. CONCLUDING REMARKS

In this paper we have shown that the stationary solution of the (ther-
mostatted) Boltzmann–Fokker–Planck equation for a two-dimensional gas
of Maxwell molecules under uniform shear flow exhibits an algebraic high-
velocity tail of the form given by Eq. (25), where s(a) is a decreasing func-
tion of the shear rate a. As a consequence, all the velocity moments of a

100 101 102 103 104 10510-4

10-3

10-2

10-1

100

σ (
a )

-σ
m

in

a

Fig. 4. Log–log plot of s−smin versus a. The solid line is a linear fit.
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Fig. 5. Polar diagram of F(j) for (a) a=0.354652 (s=105), (b) a=0.442229 (s=102),
(c) a=0.708415 (s=10), (d) a=2.485530 (s=2), (e) a=10 (s=1.427204), and (f ) a=102

(s=1.282082). Case (a) corresponds to a shear rate slightly larger than the threshold value
ath 4 0.3520, while case (f ) corresponds to an exponent s slightly larger than the minimum
value smin 4 1.252. Note that the scales in cases (a), (e), and (f ) are different from the scales in
cases (b)–(d).

degree equal to or larger than 2+s(a) diverge. The word ‘‘thermostat’’
does not mean in the present context that an external drag force is neces-
sarily applied on the system; its effect for Maxwell molecules is equivalent
to a rescaling of the velocities with respect to the thermal velocity and this
is the point of view adopted in this paper. The restriction to an idealized
scattering model with grazing collisions, Eq. (16), allows us to replace the
complicated structure of the Boltzmann collision operator by a much more
manageable Fokker–Planck operator, Eq. (17). This operator is formally
linear in velocity space, but the original bilinear nature of the collision
operator appears via the dependence of some of the coefficients on the
distribution function through the pressure tensor. On the other hand,
those nonlinear terms are negligible in the limit of large velocities and thus
one arrives at a linear second-order ordinary differential equation for F,
Eq. (30). Despite the linearity of the problem posed by Eq. (30), it applies
to states arbitrarily far from equilibrium. As a matter of fact, the nonlinear
nature of the underlying state is still present through the dependence of the
‘‘thermostat’’ (or scaling) parameter a on the shear rate a, Eq. (14). The
structure of Eq. (30) is reminiscent of Mathieu’s equation; in fact the latter
is obtained by formally setting the parameter p=0, although this is not
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possible in the physical problem at hand. The symmetry property f(V)=
f(−V) translates into the periodicity condition F(j)=F(j+p). Enfor-
cements of this condition on the solutions to Eq. (30) allows us to obtain
s(a) from the solution of the continued fraction representation (41), the
latter becoming an algebraic equation when s=2, 4, 6,... . The results show
that s(a) is lower bounded by the value smin 4 1.252 (which is asymptoti-
cally reached in the limit aQ.) and goes to infinity when the shear rate
approaches the threshold value ath 4 0.352 (in units of the collision
frequency). The first property implies that all the moments of degree equal
to or smaller than 2+smin 4 3.252 are finite in the steady state, regardless
of how large the shear rate is. As a consequence of the second property,
there exists a window of shear rates 0 [ a [ ath where the high-velocity
population decays more rapidly than algebraically (e.g., as a stretched
exponential), all the moments being finite. The lobular shape of the orien-
tation distribution F(j) [cf. Fig. 5] shows that the high-velocity popula-
tion is highly anisotropic, a feature already observed in Monte Carlo simu-
lations for the isotropic scattering model. (13) Most of the particles having
a large (peculiar) velocity V move along a narrow bunch of directions
around a preferred direction characterized by the (equivalent) angles j̃(a)
and j̃(a)+p. The angle j̃(a) rotates counter-clockwise from j̃=3p/4 (i.e.,
Vy/Vx=−1) at a=ath to j̃=p (i.e., Vy/Vx Q 0−) in the limit aQ.. The
width of the angular distribution is zero in both limits, being maximum at a
shear rate a % 1.
It is worth remarking that, despite the simplicity and artificiality of the

scattering model considered in this paper, it succeeds in capturing the most
relevant features that were expected on the basis of Monte Carlo simula-
tions and moment method results in the case of more realistic scattering
laws: (12, 13) the existence of a high-velocity tail with a monotonically
decreasing exponent s(a) and with a strongly anisotropic orientation dis-
tribution F(j; a). Thus, the asymptotic behavior (25) is not an artifact of
the specific model (17), but a general property of Maxwell molecules under
uniform shear flow. Some other features, however, are possibly peculiar of
the singular scattering law (16). For instance, the results of ref. 13 for the
isotropic scattering model seem to indicate that s(a) only diverges when
aQ 0 (i.e., ath=0) and that limaQ. s(a)=0 (i.e., smin=0). It is possible
that the extreme anisotropy of the scattering model (16) makes the high-
velocity tail phenomenon to be milder than in the general case, thus yield-
ing non-zero values for ath and smin. On a different vein, it must be said
that since the problem reduces to a linear equation, we have not deter-
mined either the coefficient measuring the amplitude of the tail (25) or the
order of magnitude of the characteristic velocity c, such that (25) applies
when V± c. Monte Carlo simulations (13) show that the amplitude is a
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decreasing function of the shear rate, while c is rather insensitive to the
shear rate. The value of c seems to be of the order of the thermal velocity
v0=`2kBT/m, so that the asymptotic behavior (25) is reached in practice
for V N 10v0. The theoretical confirmation of both properties would require
the analysis of the full kinetic equation (24) and this is beyond the scope of
this work.
It must be remarked that in this paper we have considered the repla-

cement (17) as a collision model by itself. On the other hand, it is known
that the right-hand side of (17) actually represents the contribution to the
true collision operator associated with grazing collisions. (5) Therefore, it is
tempting to conjecture that, in general, the high-velocity tail is produced by
grazing collisions of high-velocity particles. Since the expansion leading to
(17) is non-uniform for high velocities, (5) the analysis of this paper does not
provide a rigorous proof of the above conjecture but, at most, a strong
indication of it.
The results presented in this paper, along with those of refs. 10–14,

show that the population of high energy levels in the uniform shear flow,
and possibly in many other nonequilibrium states, is far greater than in the
corresponding equilibrium state described by the Maxwell–Boltzmann dis-
tribution function. Among other examples of nonequilibrium states exhi-
biting algebraic high-velocity tails we can mention the viscous longitudinal
flow of Maxwell molecules (28) and the homogeneous cooling state of
inelastic Maxwell molecules. (29) As a consequence of these nonequilibrium
overpopulation effects, many more particles than at equilibrium can be
available for surmounting the energy barriers of chemical and nuclear
reactions which, consequently, would proceed faster. We also guess that
fluctuations are enhanced with respect to the equilibrium ones, but the
analysis of this expectation would require the treatment of the fluctuating
Boltzmann equation. (30) This is an interesting avenue for further theoretical
work.

APPENDIX A. DERIVATION OF EQ. (11)

The Boltzmann collision operator for Maxwell molecules is

Q[V1 | f, f]=F dV2 F dW K(h)[f(V −1) f(V −2)−f(V1) f(V2)], (A1)

where

V −1=V1−(g · ŝ) ŝ, V −2=V2+(g · ŝ) ŝ. (A2)
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Here, g — V1−V2 is the relative velocity and ŝ is a unit vector lying on the
scattering plane and making an angle equal to 12(p−h) with the vector g.
Given an arbitrary function H(V1), standard manipulations yield

F dV1 H(V1) Q[V1 | f, f]=
1
2 F dV1 F dV2 F dW K(h) f(V1) f(V2)

×[H(V −1)+H(V
−

2)−H(V1)−H(V2)]. (A3)

In the particular case of H(V1)=mV1V1,

H(V −1)+H(V
−

2)−H(V1)−H(V2)=m(g · ŝ)[2(g · ŝ) ŝŝ− ŝg−gŝ]. (A4)

Taking into account the identities

F dW K(h)(g · ŝ) ŝ=B1g, (A5)

F dW K(h)(g · ŝ)2 ŝŝ=B2gg−
B1−B2
d−1

(gg−g2I), (A6)

where I is the d×d unit tensor and

Bk — F dW K(h) sin2k
h

2
, (A7)

we finally have

F dV1 mV1V1Q[V1 | f, f]

=−
d
d−1

(B1−B2) F dV1 F dV2f(V1) f(V2) m 1gg−
1
d
g2I2

=−
2d
d−1

(B1−B2) n(P−pI). (A8)

This allows us to identify the effective collision frequency of Eq. (9) as
n=n(B1−B2) 2d/(d−1).

High-Velocity Tail for Shear Flow 1047



APPENDIX B. DERIVATION OF EQ. (17)

Let us start rewriting Eq. (A3) as

I[H] — F dV1 H(V1) Q[V1 | f, f]

=F dV1 F dV2 F dW K(h) f(V1) f(V2)[H(V −1)−H(V1)], (B1)

where H(V1) is an arbitrary function. Now, according to the scattering law
(16), (g · ŝ)=g sin(E/2), so thatV −1−V1 ’ E. This justifies the approximation

H(V −1)−H(V1) 4 −
“H(V1)
“V1i

(g · ŝ) ŝi+
1
2
“
2H(V1)
“V1i “V1j

(g · ŝ)2 ŝiŝj. (B2)

Consequently,

I[H]Q F dV1 F dV2 f(V1) f(V2)

×3−B1
“H(V1)
“V1i

gi+
1
2
“
2H(V1)
“V1i “V1j
5B2 gi gj−

B1−B2
d−1

(gi gj−g2dij)64 ,
(B3)

where we have made use of (A5) and (A6). On the other hand,
limEQ 0 B2=0, while B1 Q (n/n)(d−1)/2d remains constant. Integrating
over V2 in Eq. (B3), we have

I[H]Q
d−1
2d
n F dV1 H(V1)

“

“V1i

×5V1i−
1

2(d−1)
“

“V1j
1V1iV1j−V21dij+

Pij−dpdij
mn
26 f(V1), (B4)

where we have integrated by parts. Since H(V1) is arbitrary, it follows that

Q[V1 | f, f]

Q

d−1
4d
n
“

“V1i
5V1i+

1
d−1
1dpdij−Pij

mn
+V21dij−V1iV1j 2

“

“V1j
6 f(V1).

(B5)
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10. A. Santos and V. Garzó, Physica A 213:409 (1995).
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